Moving Average: Apa itu dan Cara Menghitungnya Tonton video atau baca artikel di bawah ini: Rata-rata bergerak adalah teknik untuk mendapatkan gambaran keseluruhan tentang tren dalam kumpulan data, rata-rata dari setiap subset angka. Rata-rata bergerak sangat berguna untuk meramalkan tren jangka panjang. Anda bisa menghitungnya untuk jangka waktu tertentu. Misalnya, jika Anda memiliki data penjualan selama dua puluh tahun, Anda dapat menghitung rata-rata pergerakan lima tahun, rata-rata pergerakan empat tahun, rata-rata pergerakan tiga tahun dan sebagainya. Analis pasar saham akan sering menggunakan rata-rata pergerakan 50 atau 200 hari untuk membantu mereka melihat tren di pasar saham dan (semoga) meramalkan posisi saham. Rata-rata mewakili nilai 8220middling8221 dari serangkaian angka. Rata-rata bergerak sama persis, namun rata-rata dihitung beberapa kali untuk beberapa himpunan bagian data. Misalnya, jika Anda menginginkan rata-rata pergerakan dua tahun untuk kumpulan data dari tahun 2000, 2001, 2002 dan 2003, Anda akan menemukan rata-rata untuk subset 20002001, 20012002 dan 20022003. Rata-rata pergerakan biasanya diplot dan paling baik divisualisasikan. Menghitung Contoh Rata-rata Bergerak 5 Tahun Contoh Soal: Hitunglah rata-rata pergerakan lima tahun dari kumpulan data berikut: (4M 6M 5M 8M 9M) 5 6.4M Penjualan rata-rata untuk subset kedua selama lima tahun (2004 8211 2008). Yang berpusat di sekitar tahun 2006, adalah 6.6M: (6M 5M 8M 9M 5M) 5 6.6M Penjualan rata-rata untuk subset ketiga selama lima tahun (2005 8211 2009). Berpusat di sekitar tahun 2007, adalah 6.6M: (5M 8M 9M 5M 4M) 5 6.2M Lanjutkan menghitung setiap rata-rata lima tahun, sampai Anda mencapai akhir himpunan (2009-2013). Ini memberi Anda serangkaian poin (rata-rata) yang dapat Anda gunakan untuk merencanakan grafik moving averages. Tabel Excel berikut menunjukkan rata-rata bergerak yang dihitung untuk 2003-2012 bersamaan dengan kumpulan data yang tersebar: Tonton video atau baca langkah-langkah di bawah ini: Excel memiliki add-in yang kuat, Data Analysis Toolpak (cara memuat Data Analysis Toolpak) yang memberi Anda banyak pilihan tambahan, termasuk fungsi moving average otomatis. Fungsi ini tidak hanya menghitung moving average untuk Anda, tapi juga grafik data asli pada saat bersamaan. Menghemat banyak penekanan tombol. Excel 2013: Langkah Langkah 1: Klik tab 8220Data8221 dan kemudian klik 8220Data Analysis.8221 Langkah 2: Klik 8220Moving average8221 dan kemudian klik 8220OK.8221 Langkah 3: Klik kotak 8220Input Range8221 dan kemudian pilih data Anda. Jika Anda menyertakan tajuk kolom, pastikan Anda mencentang Label di kotak Row pertama. Langkah 4: Ketik interval ke dalam kotak. Interval adalah berapa banyak poin sebelumnya yang ingin Anda gunakan Excel untuk menghitung rata-rata bergerak. Sebagai contoh, 822058221 akan menggunakan 5 titik data sebelumnya untuk menghitung rata-rata untuk setiap titik berikutnya. Semakin rendah jeda, semakin mendekati rata-rata pergerakan Anda ke kumpulan data asli Anda. Langkah 5: Klik di kotak 8220Output Range8221 dan pilih area pada lembar kerja yang Anda inginkan hasilnya muncul. Atau, klik tombol radio 8220New worksheet8221. Langkah 6: Centang kotak 8220Chart Output8221 jika Anda ingin melihat diagram kumpulan data Anda (jika Anda lupa melakukan ini, Anda dapat selalu kembali dan menambahkannya atau memilih grafik dari tab 8220Insert8221.8221 Langkah 7: Tekan 8220OK .8221 Excel akan mengembalikan hasil di area yang Anda tentukan di Langkah 6. Tonton video, atau baca langkah-langkah di bawah ini: Contoh masalah: Hitung moving average tiga tahun di Excel untuk data penjualan berikut: 2003 (33M), 2004 (22M), 2005 (36M), 2006 (34M), 2007 (43M), 2008 (39M), 2009 (41M), 2010 (36M), 2011 (45M), 2012 (56 juta), 2013 (64 juta). 1: Ketik data Anda menjadi dua kolom di Excel Kolom pertama harus memiliki kolom tahun dan kolom kedua dari data kuantitatif (dalam contoh ini masalah, angka penjualan). Pastikan tidak ada baris kosong dalam data sel Anda. : Hitunglah rata-rata tiga tahun pertama (2003-2005) untuk data. Untuk contoh ini, ketik 8220 (B2B3B4) 38221 ke dalam sel D3 Menghitung rata-rata pertama Langkah 3: Tarik kotak di sudut kanan bawah d Miliki untuk memindahkan formula ke semua sel di kolom. Ini menghitung rata-rata untuk tahun-tahun berikutnya (misalnya 2004-2006, 2005-2007). Menyeret formula. Langkah 4: (Opsional) Buat grafik. Pilih semua data di lembar kerja. Klik tab 8220Insert8221, lalu klik 8220Scatter, 8221 lalu klik 8220Scatter dengan garis dan spidol yang halus.8221 Grafik rata-rata bergerak Anda akan muncul di lembar kerja. Lihat saluran YouTube kami untuk mendapatkan lebih banyak statistik bantuan dan tip Moving Average: Apa itu dan Cara Menghitungnya terakhir diubah: 8 Januari 2016 oleh Andale 22 pemikiran tentang ldquo Moving Average: Apa itu dan Cara Menghitungnya rdquo Ini adalah Sempurna dan sederhana untuk berasimilasi. Terima kasih untuk pekerjaan ini sangat jelas dan informatif. Pertanyaan: Bagaimana seseorang menghitung rata-rata pergerakan 4 tahun Tahun berapa pusat rata-rata bergerak 4 tahun di atasnya akan berpusat pada akhir tahun kedua (yaitu 31 Desember). Dapatkah saya menggunakan penghasilan rata-rata untuk meramalkan penghasilan masa depan siapa tahu tentang berpusat berarti tolong beritahu saya jika ada yang tahu. Ini berarti kita harus mempertimbangkan 5 tahun untuk mendapatkan nilai rata-rata di pusat. Lalu bagaimana dengan sisa tahun jika kita ingin mendapatkan rata-rata tahun 20118230 karena kita tidak memiliki nilai lebih lanjut setelah 2012, lalu bagaimana kita menghitungnya? Tidak ada info lagi, tidak mungkin untuk menghitung MA 5 tahun untuk 2011. Anda bisa mendapatkan rata-rata pergerakan dua tahun sekalipun. Hai, terima kasih atas videonya Namun, satu hal tidak jelas. Bagaimana melakukan ramalan untuk bulan-bulan mendatang Video menunjukkan perkiraan untuk bulan-bulan dimana data sudah tersedia. Hai, Raw, I8217m sedang mengembangkan artikel untuk memasukkan peramalan. Prosesnya sedikit lebih rumit daripada menggunakan data masa lalu sekalipun. Lihatlah artikel Duke University ini, yang menjelaskannya secara mendalam. Salam, Stephanie terima kasih untuk penjelasan yang jelas. Hai Tidak dapat menemukan tautan ke artikel Universitas Duke yang disarankan. Permintaan untuk mengeposkan link lagi Rata-rata True Range (ATR) Band Rata-rata True Range diperkenalkan oleh J. Welles Wilder dalam bukunya 1978 New Concepts In Technical Trading Systems. ATR dijelaskan secara lebih rinci pada Average True Range. Wilder mengembangkan Tragat Volatilitas berikut mengikuti rentang rata-rata yang sebenarnya, yang kemudian berkembang menjadi Rata-rata True Range Trailing Stops. Tapi ini memiliki dua kelemahan utama: Berhenti bergerak ke bawah selama tren naik jika Rata-rata True Range melebar. Saya tidak nyaman dengan ini: berhenti seharusnya hanya bergerak ke arah tren. Mekanisme Stop-and-Reverse mengasumsikan bahwa Anda beralih ke posisi pendek saat berhenti dari posisi yang panjang, dan sebaliknya. Terlalu sering, pedagang dihentikan lebih awal saat mengikuti tren dan ingin masuk kembali ke arah yang sama seperti perdagangan sebelumnya. Rata-rata True Range Bands membahas kedua kelemahan ini. Berhenti hanya bergerak ke arah tren dan jangan berasumsi bahwa tren telah berbalik saat harga melewati level stop. Sinyal digunakan untuk keluar: Keluar dari posisi panjang saat harga turun di bawah Band Rata-rata True Range yang lebih rendah. Keluar dari posisi pendek saat harga melintasi di atas rata-rata True Range Band atas. Sementara tidak konvensional, pita dapat digunakan untuk memberi sinyal masukan saat digunakan bersamaan dengan filter tren. Salib dari band lawan juga bisa dijadikan sinyal untuk melindungi keuntungan Anda. Indeks RJ CRB Commodities Index akhir tahun 2008 turun-tren ditampilkan dengan Rata-rata True Range Bands (21 hari, 3xATR, Closing Price) dan moving average eksponensial 63 hari digunakan sebagai filter tren. Arahkan kursor ke grafik untuk menampilkan sinyal perdagangan. Pergilah singkat saat harga mendekati di bawah rata-rata pergerakan eksponensial 63 hari dan pita bawah Keluar X saat harga ditutup di atas band atas. S short short ketika harga ditutup di bawah band bawah Exit X saat harga tutup di atas band atas Go short S ketika Harga ditutup di bawah band bawah Exit X ketika harga ditutup di atas upper band Tidak ada posisi long yang diambil saat harga berada di bawah moving average eksponensial 63 hari, atau posisi short ketika berada di atas moving average eksponensial 63 hari. Ada dua pilihan yang tersedia: Closing Price: ATR Bands diplot di sekitar harga penutupan. HighLow: Band diplot sehubungan dengan harga tinggi dan rendah, seperti Chandelier Exits. Waktu default ATR adalah 21 hari, dengan kelipatan diatur pada standar 3 x ATR. Rentang normal adalah 2, untuk jangka pendek, sampai 5 untuk perdagangan jangka panjang. Kelipatan di bawah 3 cenderung rawan. Lihat Indikator Panel untuk petunjuk tentang cara membuat indikator. Pengenalan pada ARIMA: model nonseasonal Persamaan peramalan ARIMA (p, d, q): Model ARIMA secara teori merupakan kelas model paling umum untuk meramalkan rangkaian waktu yang dapat Dibuat menjadi 8220stationary8221 dengan membedakan (jika perlu), mungkin bersamaan dengan transformasi nonlinier seperti pembalakan atau penguraian (jika perlu). Variabel acak yang merupakan deret waktu bersifat stasioner jika sifat statistiknya konstan sepanjang waktu. Seri stasioner tidak memiliki tren, variasinya berkisar rata-rata memiliki amplitudo konstan, dan bergoyang secara konsisten. Yaitu pola waktu acak jangka pendeknya selalu terlihat sama dalam arti statistik. Kondisi terakhir ini berarti autokorelasinya (korelasi dengan penyimpangannya sendiri dari mean) tetap konstan dari waktu ke waktu, atau ekuivalen, bahwa spektrum kekuatannya tetap konstan seiring berjalannya waktu. Variabel acak dari bentuk ini dapat dilihat (seperti biasa) sebagai kombinasi antara sinyal dan noise, dan sinyal (jika ada) dapat menjadi pola pengembalian cepat atau lambat, atau osilasi sinusoidal, atau alternasi cepat pada tanda , Dan itu juga bisa memiliki komponen musiman. Model ARIMA dapat dilihat sebagai model 8220filter8221 yang mencoba memisahkan sinyal dari noise, dan sinyal tersebut kemudian diekstrapolasikan ke masa depan untuk mendapatkan perkiraan. Persamaan peramalan ARIMA untuk rangkaian waktu stasioner adalah persamaan linier (yaitu regresi-tipe) dimana prediktor terdiri dari kelambatan variabel dependen dan atau lag dari kesalahan perkiraan. Yaitu: Prediksi nilai Y adalah konstanta dan atau jumlah tertimbang dari satu atau lebih nilai Y dan satu angka tertimbang dari satu atau lebih nilai kesalahan terkini. Jika prediktor hanya terdiri dari nilai Y yang tertinggal, itu adalah model autoregresif murni (8220 self-regressed8221), yang hanyalah kasus khusus dari model regresi dan yang dapat dilengkapi dengan perangkat lunak regresi standar. Sebagai contoh, model autoregresif orde pertama (8220AR (1) 8221) untuk Y adalah model regresi sederhana dimana variabel independennya hanya Y yang tertinggal satu periode (LAG (Y, 1) dalam Statgrafik atau YLAG1 dalam RegresIt). Jika beberapa prediktor tertinggal dari kesalahan, model ARIMA TIDAK merupakan model regresi linier, karena tidak ada cara untuk menentukan error8221 8220last periodier178 sebagai variabel independen: kesalahan harus dihitung berdasarkan periode-ke-periode Saat model dipasang pada data. Dari sudut pandang teknis, masalah dengan menggunakan kesalahan tertinggal sebagai prediktor adalah bahwa prediksi model8217 bukanlah fungsi linear dari koefisien. Meskipun mereka adalah fungsi linier dari data masa lalu. Jadi, koefisien pada model ARIMA yang mencakup kesalahan tertinggal harus diestimasi dengan metode optimasi nonlinier (8220 climb-climbing8221) daripada hanya dengan memecahkan sistem persamaan. Akronim ARIMA adalah singkatan Auto-Regressive Integrated Moving Average. Lags dari rangkaian stasioner dalam persamaan peramalan disebut istilah quotautoregressivequot, kelambatan kesalahan perkiraan disebut istilah kuotasi rata-rata quotmoving average, dan deret waktu yang perlu dibedakan untuk dijadikan stasioner disebut versi seri integimental dari seri stasioner. Model random-walk dan random-trend, model autoregresif, dan model pemulusan eksponensial adalah kasus khusus model ARIMA. Model ARIMA nonseasonal diklasifikasikan sebagai model quotARIMA (p, d, q) quot, di mana: p adalah jumlah istilah autoregresif, d adalah jumlah perbedaan nonseasonal yang diperlukan untuk stasioneritas, dan q adalah jumlah kesalahan perkiraan yang tertinggal dalam Persamaan prediksi Persamaan peramalan dibangun sebagai berikut. Pertama, izinkan y menunjukkan perbedaan D dari Y. yang berarti: Perhatikan bahwa perbedaan kedua Y (kasus d2) bukanlah selisih 2 periode yang lalu. Sebaliknya, ini adalah perbedaan pertama-perbedaan-dari-pertama. Yang merupakan analog diskrit turunan kedua, yaitu akselerasi lokal dari seri daripada tren lokalnya. Dalam hal y. Persamaan peramalan umum adalah: Disini parameter rata-rata bergerak (9528217s) didefinisikan sehingga tanda-tanda mereka negatif dalam persamaan, mengikuti konvensi yang diperkenalkan oleh Box dan Jenkins. Beberapa penulis dan perangkat lunak (termasuk bahasa pemrograman R) mendefinisikannya sehingga mereka memiliki tanda plus. Bila nomor aktual dicolokkan ke dalam persamaan, tidak ada ambiguitas, tapi penting untuk mengetahui konvensi mana yang digunakan perangkat lunak Anda saat Anda membaca hasilnya. Seringkali parameter dilambangkan dengan AR (1), AR (2), 8230, dan MA (1), MA (2), 8230 dll. Untuk mengidentifikasi model ARIMA yang sesuai untuk Y. Anda memulai dengan menentukan urutan differencing (D) perlu membuat stasioner seri dan menghilangkan fitur musiman musiman, mungkin bersamaan dengan transformasi yang menstabilkan varians seperti penebangan atau pengapuran. Jika Anda berhenti pada titik ini dan meramalkan bahwa rangkaian yang berbeda adalah konstan, Anda hanya memiliki model acak berjalan atau acak acak. Namun, rangkaian stationarized masih memiliki kesalahan autokorelasi, menunjukkan bahwa beberapa jumlah istilah AR (p 8805 1) dan beberapa istilah MA (q 8805 1) juga diperlukan dalam persamaan peramalan. Proses penentuan nilai p, d, dan q yang terbaik untuk rangkaian waktu tertentu akan dibahas di bagian catatan selanjutnya (yang tautannya berada di bagian atas halaman ini), namun pratinjau beberapa jenis Model ARIMA nonseasonal yang biasa dijumpai diberikan di bawah ini. ARIMA (1,0,0) model autoregresif orde pertama: jika seri stasioner dan autokorelasi, mungkin dapat diprediksi sebagai kelipatan dari nilai sebelumnya, ditambah konstanta. Persamaan peramalan dalam kasus ini adalah 8230 yang Y regresi pada dirinya sendiri tertinggal oleh satu periode. Ini adalah model konstanta 8220ARIMA (1,0,0) constant8221. Jika mean Y adalah nol, maka istilah konstan tidak akan disertakan. Jika koefisien kemiringan 981 1 positif dan kurang dari 1 besarnya (harus kurang dari 1 dalam besaran jika Y adalah stasioner), model tersebut menggambarkan perilaku rata-rata pada nilai periodisasi berikutnya yang diperkirakan akan menjadi 981 1 kali sebagai Jauh dari mean sebagai nilai periode ini. Jika 981 1 negatif, ia memprediksi perilaku rata-rata dengan alternasi tanda, yaitu juga memprediksi bahwa Y akan berada di bawah rata-rata periode berikutnya jika berada di atas rata-rata periode ini. Dalam model autoregresif orde kedua (ARIMA (2,0,0)), akan ada istilah Y t-2 di sebelah kanan juga, dan seterusnya. Bergantung pada tanda dan besaran koefisien, model ARIMA (2,0,0) bisa menggambarkan sistem yang pembalikan rata-rata terjadi dengan mode sinusoidal oscillating, seperti gerak massa pada pegas yang mengalami guncangan acak. . ARIMA (0,1,0) berjalan acak: Jika seri Y tidak stasioner, model yang paling sederhana untuk model ini adalah model jalan acak, yang dapat dianggap sebagai kasus pembatas model AR (1) dimana autoregresif Koefisien sama dengan 1, yaitu deret dengan reversi mean yang jauh lebih lambat. Persamaan prediksi untuk model ini dapat ditulis sebagai: di mana istilah konstan adalah perubahan periode-ke-periode rata-rata (yaitu drift jangka panjang) di Y. Model ini dapat dipasang sebagai model regresi yang tidak mencegat dimana Perbedaan pertama Y adalah variabel dependen. Karena hanya mencakup perbedaan nonseasonal dan istilah konstan, model ini diklasifikasikan sebagai model quotARIMA (0,1,0) dengan konstan. Model random-walk-without - drift akan menjadi ARIMA (0,1, 0) model tanpa ARIMA konstan (1,1,0) model autoregresif orde satu yang terdesentralisasi: Jika kesalahan model jalan acak diobot dengan autokorelasi, mungkin masalahnya dapat diperbaiki dengan menambahkan satu lag variabel dependen ke persamaan prediksi - - yaitu Dengan mengundurkan diri dari perbedaan pertama Y pada dirinya sendiri yang tertinggal satu periode. Ini akan menghasilkan persamaan prediksi berikut: yang dapat diatur ulang menjadi Ini adalah model autoregresif orde pertama dengan satu urutan perbedaan nonseasonal dan istilah konstan - yaitu. Model ARIMA (1,1,0). ARIMA (0,1,1) tanpa perataan eksponensial sederhana: Strategi lain untuk memperbaiki kesalahan autokorelasi dalam model jalan acak disarankan oleh model pemulusan eksponensial sederhana. Ingatlah bahwa untuk beberapa seri waktu nonstasioner (misalnya yang menunjukkan fluktuasi yang bising di sekitar rata-rata yang bervariasi secara perlahan), model jalan acak tidak berjalan sebaik rata-rata pergerakan nilai masa lalu. Dengan kata lain, daripada mengambil pengamatan terbaru sebagai perkiraan pengamatan berikutnya, lebih baik menggunakan rata-rata beberapa pengamatan terakhir untuk menyaring kebisingan dan memperkirakan secara lebih akurat mean lokal. Model pemulusan eksponensial sederhana menggunakan rata-rata pergerakan rata-rata tertimbang eksponensial untuk mencapai efek ini. Persamaan prediksi untuk model smoothing eksponensial sederhana dapat ditulis dalam sejumlah bentuk ekuivalen matematis. Salah satunya adalah bentuk koreksi yang disebut 8220error correction8221, dimana ramalan sebelumnya disesuaikan dengan kesalahan yang dibuatnya: Karena e t-1 Y t-1 - 374 t-1 menurut definisinya, ini dapat ditulis ulang sebagai : Yang merupakan persamaan peramalan ARIMA (0,1,1) - tanpa perkiraan konstan dengan 952 1 1 - 945. Ini berarti bahwa Anda dapat menyesuaikan smoothing eksponensial sederhana dengan menentukannya sebagai model ARIMA (0,1,1) tanpa Konstan, dan perkiraan koefisien MA (1) sesuai dengan 1-minus-alpha dalam formula SES. Ingatlah bahwa dalam model SES, rata-rata usia data dalam prakiraan 1 periode adalah 1 945. yang berarti bahwa mereka cenderung tertinggal dari tren atau titik balik sekitar 1 945 periode. Dengan demikian, rata-rata usia data dalam prakiraan 1-periode-depan model ARIMA (0,1,1) - tanpa konstan adalah 1 (1 - 952 1). Jadi, misalnya, jika 952 1 0,8, usia rata-rata adalah 5. Karena 952 1 mendekati 1, model ARIMA (0,1,1) - tanpa model konstan menjadi rata-rata bergerak jangka-panjang, dan sebagai 952 1 Pendekatan 0 menjadi model random-walk-without-drift. Apa cara terbaik untuk memperbaiki autokorelasi: menambahkan istilah AR atau menambahkan istilah MA Dalam dua model sebelumnya yang dibahas di atas, masalah kesalahan autokorelasi dalam model jalan acak diperbaiki dengan dua cara yang berbeda: dengan menambahkan nilai lag dari seri yang berbeda Ke persamaan atau menambahkan nilai tertinggal dari kesalahan perkiraan. Pendekatan mana yang terbaik Aturan praktis untuk situasi ini, yang akan dibahas lebih rinci nanti, adalah bahwa autokorelasi positif biasanya paling baik ditangani dengan menambahkan istilah AR ke model dan autokorelasi negatif biasanya paling baik ditangani dengan menambahkan MA istilah. Dalam deret waktu bisnis dan ekonomi, autokorelasi negatif sering muncul sebagai artefak differencing. (Secara umum, differencing mengurangi autokorelasi positif dan bahkan dapat menyebabkan perubahan dari autokorelasi positif ke negatif.) Jadi, model ARIMA (0,1,1), di mana perbedaannya disertai dengan istilah MA, lebih sering digunakan daripada Model ARIMA (1,1,0). ARIMA (0,1,1) dengan perataan eksponensial sederhana konstan dengan pertumbuhan: Dengan menerapkan model SES sebagai model ARIMA, Anda benar-benar mendapatkan fleksibilitas. Pertama, perkiraan koefisien MA (1) dibiarkan negatif. Ini sesuai dengan faktor pemulusan yang lebih besar dari 1 dalam model SES, yang biasanya tidak diizinkan oleh prosedur pemasangan model SES. Kedua, Anda memiliki pilihan untuk memasukkan istilah konstan dalam model ARIMA jika Anda mau, untuk memperkirakan tren nol rata-rata. Model ARIMA (0,1,1) dengan konstanta memiliki persamaan prediksi: Prakiraan satu periode dari model ini secara kualitatif serupa dengan model SES, kecuali bahwa lintasan perkiraan jangka panjang biasanya adalah Garis miring (kemiringannya sama dengan mu) bukan garis horizontal. ARIMA (0,2,1) atau (0,2,2) tanpa pemulusan eksponensial linier konstan: Model pemulusan eksponensial linier adalah model ARIMA yang menggunakan dua perbedaan nonseason dalam hubungannya dengan persyaratan MA. Perbedaan kedua dari seri Y bukan hanya perbedaan antara Y dan dirinya tertinggal dua periode, namun ini adalah perbedaan pertama dari perbedaan pertama - i. Perubahan perubahan Y pada periode t. Jadi, perbedaan kedua Y pada periode t sama dengan (Y t - Y t-1) - (Y t-1 - Y t-2) Y t - 2Y t-1 Y t-2. Perbedaan kedua dari fungsi diskrit sama dengan turunan kedua dari fungsi kontinyu: ia mengukur kuotasi kuadrat atau quotcurvaturequot dalam fungsi pada suatu titik waktu tertentu. Model ARIMA (0,2,2) tanpa konstan memprediksi bahwa perbedaan kedua dari rangkaian sama dengan fungsi linier dari dua kesalahan perkiraan terakhir: yang dapat disusun ulang sebagai: di mana 952 1 dan 952 2 adalah MA (1) dan MA (2) koefisien. Ini adalah model pemulusan eksponensial linear umum. Dasarnya sama dengan model Holt8217s, dan model Brown8217s adalah kasus khusus. Ini menggunakan rata-rata pergerakan tertimbang eksponensial untuk memperkirakan tingkat lokal dan tren lokal dalam rangkaian. Perkiraan jangka panjang dari model ini menyatu dengan garis lurus yang kemiringannya bergantung pada tren rata-rata yang diamati menjelang akhir rangkaian. ARIMA (1,1,2) tanpa perataan eksponensial eksponensial yang terfragmentasi. Model ini diilustrasikan pada slide yang menyertainya pada model ARIMA. Ini mengekstrapolasikan tren lokal di akhir seri namun meratakannya pada cakrawala perkiraan yang lebih panjang untuk memperkenalkan catatan konservatisme, sebuah praktik yang memiliki dukungan empiris. Lihat artikel di quotWhy the Damped Trend karyaquot oleh Gardner dan McKenzie dan artikel quotGolden Rulequot oleh Armstrong dkk. Untuk rinciannya. Umumnya disarankan untuk tetap berpegang pada model di mana setidaknya satu dari p dan q tidak lebih besar dari 1, yaitu jangan mencoba menyesuaikan model seperti ARIMA (2,1,2), karena hal ini cenderung menyebabkan overfitting. Dan isu-isu kuotom-faktorquot yang dibahas secara lebih rinci dalam catatan tentang struktur matematis model ARIMA. Implementasi Spreadsheet: Model ARIMA seperti yang dijelaskan di atas mudah diterapkan pada spreadsheet. Persamaan prediksi adalah persamaan linier yang mengacu pada nilai-nilai masa lalu dari rangkaian waktu asli dan nilai kesalahan masa lalu. Dengan demikian, Anda dapat membuat spreadsheet peramalan ARIMA dengan menyimpan data di kolom A, rumus peramalan pada kolom B, dan kesalahan (data minus prakiraan) di kolom C. Rumus peramalan pada sel biasa di kolom B hanya akan menjadi Sebuah ekspresi linier yang mengacu pada nilai-nilai pada deretan kolom A dan C sebelumnya, dikalikan dengan koefisien AR atau MA yang sesuai yang disimpan di sel di tempat lain pada spreadsheet.
No comments:
Post a Comment